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J. Phys. A: Math. Gen. 13 (1980) 1051-1062. Printed in great Britain 

Interacting dimers on the simple cubic lattice as a model 
for liquid crystals 

Douglas B Abraham? and Ole J Heilmann 
Department of Chemistry, H C 0rsted Institute, University of Copenhagen, 
DK-2100 Copenhagen 0,  Denmark 

Received 31 May 1979 

Abstract. We consider two lattice gas models where dimers are placed on the simple cubic 
lattice with an attractive interaction between collinear dimers. We prove (using refiectioh 
positivity and Peierls’ argument) that at low enough temperatures both models exist in an 
ordered state where one or two of the three orientations are preferred. No attempt is made 
at deciding whether the ordered state actually has dimers of two orientations or only of one 
orientation. Both models have earlier been considered in the two-dimensional version and 
proved to exhibit ordering at low temperature. 

1. Introduction 

Hard rod models on a lattice have been used to discuss the types of partial ordering or 
mesomorphism which might occur in systems of long molecules. As discussed recently 
in the introduction to a paper by Heilmann and Lieb (1979), (hereinafter to be referred 
to as HL), one such class of models has the configuration of each lattice site completely 
specified in a given ordered state. HL then showed how to treat models of mesomorphic 
phases where alignment of long molecules occurs in the ordered state; the new aspect is 
that ordered lines can slide with respect to one another. The models postulate 
anisotropic, attractive interactions between rods; the interplay between such attrac- 
tions and the hard core repulsion may well be an essential feature of the phenomenon of 
orientational ordering. 

The present paper carries this line of reasoning further; as well as allowing relative 
sliding of stacks of rod-like molecules, ordered states will be given in which the planes 
are ordered, up to sliding where appropriate, but in which there is disorder between 
planes in the ground state. 

One model treated is the generalisation of model I of HL to three dimensions; this is 
a monomer-dimer system which favours collinear alignment of dimers. The other is the 
three-dimensional extension of a soft dimer model introduced by Abraham and 
Heilmann (1975) (hereinafter referred to as AH); here straight configurations are 
favoured over bent ones, or chain termination. The treatment used here exploits 
Peierls’ argument (for a review see, for instance, Griffith (1972)) and reflection 
positivity, recently exploited in this context by HL. A central feature of the application 
of the Peierls argument in the present article is that in three dimensions the relevant 
contours are made up of line segments rather than the usual sheets and polyhedra. 

t On leave of absence from: Department of Theoretical Chemistry, University of Oxford, South Parks Road, 
Oxford OX1 3PH, UK. 
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1052 D B Abraham and 0 J Heilmann 

The problem of the statistics of relative ordering, either of sliding or of orientation, 
has yet to be solved. As will probably become clear at the end of this paper, the problem 
bristles with difficulty. 

2. Models 

Both models can be viewed as dimer models on the simple cubic lattice (a dimer covers 
two vertices which are connected by an edge). Model I is the three-dimensional version 
of model I of HL; here the dimers are hard (i.e. a vertex is either empty or covered by at 
most one dimer) and there is a contribution -a to the energy for each pair of 
neighbouring, collinear dimers and a contribution of zero for any other configuration. 
Model I1 is the three-dimensional version of the model considered in Q 2 of AH, i.e. the 
dimers are softened to allow up to two dimers covering a vertex (but not more than one 
dimer on an edge of the lattice). The interaction is solely between dimers covering the 
same vertex; we shall change the notation compared to AH and introduce a contribu- 
tion -a to the energy if the overlapping dimers are collinear and a contribution -b if 
they form an angle of 90". Since we intend to use the grand canonical ensemble we 
include a chemical potential term -pNd to the Hamiltonian, writing N d  for the number 
of dimers. 

We introduce a coordinate system such that the vertices of the lattice coincide with 
the points with integer coordinates ( Z 3 ) .  We take as our domain A a box-shaped subset 
of size 2N x 2M x 2L with periodic boundary conditions: 

A = { ( x , y , z ) : x = O , l  , . . . ,  2 N - 1 , ~ = 0 , 1 ,  . . . ,  2 M - 1 , ~ = 0 , 1 ,  . . . ,  2L-1) 

and compute coordinates modulo 2N, 2M or 2L onto the intervals O S X  < 2N, 
0 s y < 2M and 0 s z < 2L whenever necessary. The conditions on A (even length and 
periodic boundary conditions) are necessary in order to have reflection positivity. 

In the following we shall consider planes perpendicular to one of the coordinate 
axes; to be definite, let us assume that the plane is perpendicular to the z axis. We shall 
supply the plane with the cyclic boundary conditions introduced for A, i.e. x coordinates 
are calculated modulo 2N onto O<x<2N and y coordinates modulo 2M onto 
0 s y < 2M. We shall be concerned about objects which are connected in the plane; this 
is defined in the usual transitive way by first defining when two objects are directly 
connected and then defining two objects to be connected if they are either directly 
connected or connected to the same third object, i.e. as a graph embedded in the plane. 
A connected component will be a set of objects which are not connected to any objects 
outside the set. A connected component is said to extend infinitely in both directions in 
the plane if one can find two loops in the corresponding graph, such that along one of the 
loops the net increase in the x coordinate is 2N (or -2N) and the net increase in the y 
coordinate is zero while along the other loop the increase in x is zero while the increase 
in y is 2M (or -2M). A connected component is said to extend infinitely in one direction 
in the plane if it does not extend infinitely in both directions, but one can find a loop in 
the graph, such that the net increase in at least one of the coordinates is different from 
zero. A connected component which neither extends infinitely in one direction nor in 
both directions is said to be bounded in the plane. 

A dimer placed on the cubic lattice is identified by the position, in Cartesian 
coordinates, of its midpoint, i.e. for instance (x +$, y ,  z )  for the dimer which covers the 
vertices (x, y,  z )  and (x + 1,  y ,  z ) .  The set of all possible dimer positions is denoted by 93. 
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Sometimes 93 will be called the 'edges of A'. A dimer arrangement on A is an allowed 
configuration of dimers on the edges of A (whether a configuration is allowed or not 
might, of course, depend on the model). The set of all possible dimer arrangements on 
A (including the empty one) will be denoted BI (respectively BII) for the two models or 
just 9 if we do not want to specify the model in a given context. If we attach a copy of 
the two-point space {0,1} to each dimer position in W, then we can identify the set of all 
possible dimer configurations on A, %, with {0, l}24NML by letting 1 correspond to the 
presence of a dimer and 0 to the absence of a dimer. We call % the phase space. BI and 
911  are subsets of % which we describe by introducing characteristic functions on % 
denoted xr and xII defined for all 6 E % by ( i  = I or 11): 

Functions defined on 9 can, of course, be extended to functions on %' in many ways. 
However, xf has a natural extension which we shall use in the following when necessary 
( i  = I, 11; ( E  e): 

3. Reflection positivity 

The reflection planes perpendicular to the x axis are defined as follows. Let j be an 
integer satisfying 0 6 j < N and consider the pair of planes: 

L- ,={( j+$,y ,z) :  ~ E R , Z E R }  

L f j  = { ( j +  N +i, y ,  2): y ER, z ER}. 
(3) 

We define Boj as the dimer positions in L-j  U Lti, $?A'+, as dimer positions with x 
coordinates satisfying j + 1 s x  6 j + N and Bej  as the dimer positions with x coor- 
dinates satisfying either x G j or j + N + 1 s x. Thus the set W is partitioned into three 
sets: Boj, 93+j and The phase space % is partitioned similarly into %',, %'+, and %-, 
(with W O j  = (0 ,  l}sML being the phase space corresponding to ?XIo,? etc). A point 6 E % 
can be written as an ordered triplet, 5 = (f-,, toj, t',) with tij E %'p By F', we denote 
the (complex-valued) functions on % which are independent of t- i; similarly F-, 
denotes the functions on W which are independent of t'h A function on % which 
depends only on toi is in both F'j and F-i. The involution, e,, of A onto A is defined as 
the reflection: 

e,: (x, y, z ) +  ( 2 j +  1 -x, y ,  z ) .  (4) 

6, maps 
involution of % onto W (which again is denoted by O j ) :  

onto W j  and onto B+, while it is the identity on Booi. It lifts to an 

= e j ( t - j ,  toj, t + j )  = ( t + j ,  to,, t - j ) .  (5) 

We shall also use the symbol 
defined by 

for the involution on (complex-valued) functions on % 



1054 D B Abraham and 0 JHeilmann 

with a slight abuse of notation. Obviously 

O,F+i = F-i. (7) 

We now make a crucial observation; for models I and I1 the characteristic functions ,yI 
and ,yII can be factorised (i = I, 11): 

where x ~ , , ,  E F+,, ,y-&,, E F-], d,,y+,,, = x-,,] (x+, , ,  is the characteristic function on 
%+, U %‘01 for model i). One should note that the factorisation (8) is not true in general; 
if the particles had been longer (for instance, trimers) then the factorisation would 
clearly not have been possible. 

That model I has ‘reflection positivity’ (i.e. satisfies equation (12) below) follows 
from HL. That model I1 also has reflection positivity is even simpler; namely the 
Hamiltonian HII(5) for model I1 can be written as the sum 

= h +II,J(t) + e$ +II,J(t) (9) 
where h +11,, E F+,. 

The partition function Z is given by ( p  = T-l, i = I, 11): 

I f f  is any (complex-valued) function on 9 then its expectation value (f) is given by 
(i = I, 11) 

Reflection positivity implies that i f f  and g are complex valued functions on 9 and 
f~ F’, and g E F-, then (7 is the complex conjugate of f): 

(7(e,f)>ao (12) 

I ( f g  ) I * ( .7( e m g  ( e,g )). (13) 

Definition. In a given dimer arrangement 5 E 9 a vertex is called a bad vertex in model 1 
if it is not covered by a dimer and in model I1 if it is not covered by two collinear dimers. 
An edge is called a bad edge if at least one of the two vertices is a bad vertex or if in 
model I the vertices are covered by different dimers of which one is in the direction of 
the edge while the other is perpendicular to the edge. An elementary square of the 
cubic lattice (i.e. a square containing four vertices connected by four edges) is called a 
bad square if at least one of the four edges is bad. An elementary cube of the cubic 
lattice (i.e. a cube containing eight vertices connected by twelve edges and bounded by 
six elementary squares) is called a bad cube if at least one of the squares is a bad square. 
Vertices, edges, elementary squares and elementary cubes which are not bad are called 
good. 

A bad cube has an alternative characterisation: given a cube S, let the restriction 
5 1 S,  for 5 E 9/, j = I, 11, specify the state on all edges either in, or incident on, S,.  Then 
‘ S ,  is good’ means 5 1 SI must be compatible with an overall ground state of the model. 

An elementary cube may be identified by its midpoint, i.e. a vertex in a cubic lattice 
obtained by shifting the original lattice by (z, 5 , ~ ) ;  we shall call this lattice the shifted 1 1 1  
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cubic lattice and supply it with the cyclic boundary conditions corresponding to A. If r is 
a vertex of the shifted cubic lattice, then we define Q, as the function on $3 which is 1 on 
the dimer arrangements where the cube at r is bad and 0 on the dimer arrangement 
where the cube at r is good (note that Q, depends on the model). If A is a non-empty 
collection of (distinct) cube midpoints and \AI is the number of elements in A,  then we 
have analogously to the lemma of § 5 of HL that (assuming p + a > 0 )  

(5 Q,)”‘*’ c 8 eCpa 

where 

(in model I1 we have assumed b < a ) .  

4. Peierls’ argument 

In a dimer arrangement two bad cubes are said to be directly connected if they have an 
elementary square in common (Le. if they are connected by an edge in the shifted cubic 
lattice). In the following we shall use the word contour to mean planar, self avoiding 
polygon on the shifted cubic lattice, such that all the vertices visited by the walk 
correspond to bad cubes, i.e. a contour is a planar connected set of bad cubes which may 
be connected to other bad cubes. We shall call a contour long if the polygon extends 
infinitely in one or both directions in the plane; otherwise it is called short. 

Lemma 1. Let PLc be the function on 9 which is one on arrangements with at least one 
long contour and zero on arrangements without long contours. If 24 e-Oa < 1 then 

(PLc)s8(ML(24 e-Pa)2N +NL(24 e-pa)2M +NM(24 e-Pa)2L)(1 -24 e-pa)-’. (16) 

Proof. Let us consider the contribution from contours in a plane perpendicular to the z 
axis and such that the net increase in x is at least 2N. This contour has to cross the line 
x = 5 in at least one point; there are 2M vertices to choose in between. If we pick one of 
them as a starting point for the contour, then the following vertices can at most be added 
in three different ways. Since the length is at least 2N and there are 2L planes 
perpendicular to the z axis then it follows from equation (14) that the contribution to 
(PLc) from long contours in ‘the x direction’ in planes perpendicular to the z axis is at 
most 

4ML(24 e-Pa)2N(1 -24 e -@-‘  

The lemma follows by taking all the possible ‘orientations’ of long contours into 
account. 

The lemma implies that if 24 e-pa < 1, then dimer arrangements with long contours 
can be neglected in the infinite-volume limit at the cost of a mild restriction on how this 
limit is taken. 

We shall consider good cubes to be connected if they have an edge in common. With 
this definition one has for obvious topological reasons the following lemma. 
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Lemma 2. In dimer arrangements with no long contours, in each plane of the shifted 
cubic lattice there is a connected component of good cubes which extends infinitely in 
both directions. 

An elementary cube, of course, belongs to three perpendicular planes of the shifted 
cubic lattice. A good cube which in all three planes belongs to the connected 
component of good cubes which extends infinitely in both directions is called a really 
good cube. Other cubes (including bad cubes) are denoted not really good cubes. If r is a 
vertex of the shifted cubic lattice, then we define Q‘, as the function on 9 which is zero 
when there are no long contours and the cube at r is really good and one when there is a 
long contour or the cube at r is not really good. 

Proof. The first term in (17) corresponds to the occurrence of a long contour; the second 
term is a standard estimate on the probability of having a contour of bad cubes which 
surrounds r. The number of contours of length 1 surrounding r is estimated as follows. 
The plane can be chosen in three ways; a contour of length 1 can be formed in less than 
4.3‘-2/21 ways and be placed ‘around’ r in at most (1/4 + 1)* ways ithe contour is a walk 
on the same lattice as the lattice on which r is chosen; consequently r may be on the 
contour). Together that gives 

&3‘( I + 4)’/21 G &3‘(1+ 4) 

since 13 4. The value for PRG then follows from equation (14) and the fact that 1 is even. 
If we consider really good cubes to be connected whenever they have an edge in 

common and cubes which are not really good to be connected whenever they have an 
elementary square in common, then lemma 2 would still hold if we replaced ‘long 
contours’ with ‘long contours of not really good cubes’ and ‘good cubes’ with ‘really 
good cubes’. Consequently, we want the following lemma which bounds the probability 
of ‘long contours of not really good cubes’. 

Lemma 4. Let PNRG be the function on 9 which is zero if each plane of the shifted cubic 
lattice has a connected component of really good cubes which extends infinitely in both 
directions and is one otherwise. If 96.4 e-Oa < 1 then 

( P N R G ) ~  8 ( M L y l z N  + N L y l Z M  +NMylZL)( l  -y1)-’ (20) 

y1 = 96.4 e-@. (21) 

Proof. Once we have established the number of ways in which we can continue a 
‘contour of not really good cubes’ (called an NRG contour in the following), then the 
inequality (20) follows by the same argument as lemma 1. If the not really good cubes of 
our NRG contour are surrounded by a contour in the plane, then we might just follow 
that contour around from the entry point to the exit point of the NRG contour. For 
each bad cube in the contour we can (as usual) continue to three different cubes and 
each time we can choose that cube to be bad or good but surrounded by a contour in one 
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of the two perpendicular planes. This gives an extra factor 3 or a total factor of 9 per bad 
cube in the plane. 

For a contour perpendicular to the plane we count as follows. We choose a bad cube 
(with unspecified position so far) to start from; the next bad cube can be placed in four 
different positions and each of the following bad cubes in three positions. When the 
position chosen is identical to the position of the first cube, then this contour is finished, 
i.e. at a cost of an extra factor three we obtain the information on the length of this 
particular contour. Assume that the length is I ;  then we have so far collected a factor 
($3'. However, any cube might have been chosen as starting point and we can go 
around the contour in both directions; this reduces the number of different contours by 
a factor 1/21. Next we have to choose one of the interior cubes as the place where our 
NRG contour enters; as in the proof of lemma 3 we can choose between at most 
(114 + 1)* cubes. Finally, we have to choose an exit point of the NRG contour; this has to 
be a cube in the plane of the NRG contour which is a neighbour of one of the not really 
good cubes surrounded by the contour just placed. There are at most 1 such cubes of 
which one can be excluded because it is the point of entry. As explained in the caption 
to figure 1, we might need more than one cxit point; therefore we include a factor 4l-l to 
account for the possibility that each of the candidates might or might not be used (in the 
latter case we also have to choose the orientation of the plane of the next contour). In all 
we have collected a factor 

12'(1/4 + 1)2/61 

for the possibilities of continuing the NRG contour with a piece surrounded by a 
contour of length 1, including the decision on the length of this particular contour and 
the position and orientation of the continuation. The length I is even and at least eight, 
since otherwise all the cubes inside the contour are bad and we might have considered 
this part of the NRG contour as consisting of bad contours in the plane. For 1 even (and 
positive) we have 

12'(1/4 i- 112/61 s 12'(961/366)''244. 

This concludes the proof of the lemma. 

Figure 1. Let the full line represent a contour and the broken line a perpendicular plane. If 
an NRG contour in that plane enters somewhere along the part A-A, then it has to leave 
again at the part A-A (otherwise the NRG contour would not be connected in the plane). 
Let us now suppose that further along the same NRG contour we enter the contour drawn at 
the part B-B; then we have to choose a new exit point at that part, but the bad cubes have 
already been counted once. Therefore, we do not get any additional bad cubes to 
counterweigh the extra 'entropy'. The only remedy is to decide on any other exit point when 
the contour is included at its first entrance. 
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Consequently, if 96.4 e-pa < 1, then the dimer arrangements on which PNRC is one 
can be neglected in the infinite-volume limit. The only problem left is to analyse the 
structure of the arrangements on which P N ~ ~  is zero. 

A good vertex can be classified according to the direction of the dimer(s) which 
cover(s) it as having x, y or z structure. Similarly, a good edge may classify as having xx, 
y y ,  zz,  xy, yx, xz, zx,  yz or z y  structure, giving the structure of the two terminal vertices 
with the vertex with the lowest coordinate first. If a good edge has xx, y y  or z z  structure 
then it is said to be of type 1, otherwise it is said to be of type 2 ,  The following statements 
arise by realising that any other conceivable structure is impossible. If a good edge is of 
type 2, then the direction of the edge has to be perpendicular to the directions of the 
structure of the terminal vertices. A good square either has four good edges of type 1 or 
two good edges of type 2 which are parallel and have the same structure. A good cube 
either has 12 good edges of type 1 or four good edges of type 2 which are parallel and 
have the same structure. 

From the last statement is follows that, in a connected component of good cubes in a 
plane of the shifted cubic lattice, the edges perpendicular to the plane are either all of 
type 1 or all of type 2 and have the same structure. The same is, of course, true for a 
connected component of really good cubes. If P R N G  = 0 then any two perpendicular 
planes of the shifted cubic lattice have at least one really good cube in common. 
Consequently, if P N R G  = 0 then either all the rea!ly good cubes have only edges of type 1 
and all the vertices of the really good cubes have the same structure, or one of the three 
coordinate axes is special in the sense that in any plane of the cubic lattice perpendicular 
to this direction, all the vertices of the really good cubes have the same structure and the 
direction of the structure is one of two directions parallel to the plane, but different 
planes can have a different structure (in fact, both directions have to occur in order to 
single out the direction). 

5. Regions of disorder 

For model I it is easy to see that one can apply the theory of Ruelle (1963) to prove that 
the Kirkwood-Salsburg equations have a unique solution with clustering properties of 
the correlation functions (Ruelle 1964) if the temperature is high enough and/or the 
chemical potential is small enough (i.e. negative enough). 

The same method can be applied to model I1 if one uses the rewriting to a trimer 
model introduced by Abraham and Heilmann (1972). We shall, however, follow the 
analysis of AH, since this yields the following additional results. 

Theorem 5. In model I1 if b > a (favouring of bend configurations over stretched), then 
there is no phase transition. 

Proof. The proof essentially follows the argument given in § 3 by AH, i.e. we rewrite the 
model as a monomer-dimer model and use the method by Heilmann and Lieb (1972) to 
prove absence of phase transition. However, certain technical points have to be 
changed. Nevertheless, the reader might well prefer not to read the rest of this section. 

The city which replaces a vertex is built up as follows. Each of the six external edges 
is incident on a separate vertex with monomer weight zero; these six vertices are called 
the outer vertices and denoted fx, -x, +y, -y ,  +z and -z after the direction of the 
external edge. Next we have three vertices called the inner vertices and denoted 1, 2 
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and 3;  they all have monomer weight m. Finally, we have two centre vertices denoted 4 
and 5 ;  4 has monomer weight m', and 5 has monomer weight zero. All of the outer 
vertices are connected to all the inner vertices with edges with weights a l ,  a2 or a 3 ;  
vertices + x  and --x are connected to vertex i with weight a,  ( i  = 1 , 2 , 3 ) ;  vertices + y  and 
- y  are connected to vertex i with weight a,+l for i = 1 , 2  and with weight a1 for i = 3 ;  
vertices +z and -2 are connected tu vertex i with weight a3 for i = 1 and with weight 

for i = 2 , 3 .  The three inner vertices are mutually connected by edges with weight 
w,  they are all connected to vertex 4 by edges with weight U and to vertex 5 by edges 
with weight 1. 

Following AH we have the following conditions on the parameters ( f  is an extra 
factor included for each city): 

2(ala2 + u2u3 + ala3)m'f (22a) 

(a: + U S  + u t  +ala2+a2a3+ala3)mtf (22b) 

eB(a+fiL) = 

eD(b+&L) = 

e t P ~ = 2 ( a l + u 2 + a 3 ) ( u + m m t ) f  (22c) 
1 = 3(m'w + 2mu i- m2mt)f .  ( 2 2 4  

It is again relatively easy to see that if a < b, one can always find strictly positive (real) 
values of the five edge weights, U T ,  a2, a3 ,  U and w, which satisfy these four equations. 

The only remaining step is to prove that the lemma of AH holds in the present case. 
We shall do this by indicating the changes in the proof of AH. The contribution from 
linear polymers of length rz + 2 is bounded by 

6)ePILl(leP(a+&L)l +41es(bi'LL)l)"(n +2)/2  ( 2 3 ~ )  

(23b) 

while the contribution from closed polygons of length n + 2 is bounded by 
(leP(a+&L)I +4/eS(b+&L)I)" 

Equations (9) of AH are replaced by 

31m'w +2mu +m2m'j I f1  

The rearrangement leads to the following sufficient inequality: 
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for all (not necessarily real) choices of al ,  a2 and a3,  then we end up with the same 
condition on r ]  as in A H  to ensure that 

1-2- 27 - T~ ial + a2+ a3I2, ,, 
(1 - d2 CY 

and we have thus established that the lemma of AH also holds in the three-dimensional 
case. 

The remaining part of the argument is the same as in AH. 

6. Higher dimensions 

It is natural to ask whether there is an immediate generalisation from three dimensions 
to higher dimensions. The answer is that the arguments of $ 5  3 and 4 as far as the proof 
of lemma 4 is concerned are essentially independent of the number of dimensions if the 
dimensionality is at least 3; only some of the numerical constants are changed. 
However, the arguments presented at the end of Q 4 break down as soon as we move on 
to four dimensions. 

Since in four dimensions we have two directions perpendicular to any plane, then we 
can create good squares where all four edges are of type 2 (by alternating between the 
two perpendicular directions); we can also create a good square with three different 
directions present (the two perpendicular directions at one vertex each and one of the 
parallel directions at two neighbouring vertices). We can continue to construct a good 
3~ cube where all four directions are present as shown in figure 2 and finally, we can 
construct a good 4~ cube where again all four directions are present as shown in table 1. 
If or e let this 4~ cube manifold by reflection in the planes of the 4~ simple cubic lattice, 
then one obtains a configuration where the 4~ cubic lattice is covered by infinitely long 
rods of all four orientations in equal proportions; it seems possible to create ‘ground 
states’ with the four directions present in any relative proportions. Therefore, our proof 
will not yield an ordered phase with certain directional preferences; although it might 
yield a low-temperature phase with some kind of limitations on the possible disorder. 

Figure 2. The figure shows a good three-dimensional cube in a four-dimensional space, 
where all four directions are represented at the vertices (the directions are shown as bold 
lines). 
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Table 1. The table shows a good four-dimensional cube in a four-dimensional space with all 
four directions represented. 

Vertex Vertex 
Direction Direction 

(x1, x.7, x33x4) (XI, x.7, x3, x4) 

In fact, our investigations indicate that in four dimensions the degeneracy of the 
‘ground state’ increases as some constant to the linear dimensions of A or to the square 
of the linear dimensions of A, i.e. the system has no residual entropy. We shall not 
pursue the problems further; after all we believe the real world to be three dimensional 
and we have made the points we want to make: the treatment of higher dimensions is 
not trivial and the difference between three and four dimensions is so large that 
attempts to reach the three-dimensional world by an expansion from the four- 
dimensional world must be considered futile. 

7. Conclusion 

We have demonstrated that both models have a phase transition from a low-tempera- 
ture state with some orientational order to a high-temperature gas-like state with no 
order. The state at absolute zero (p  = C O )  will single out one of the coordinate 
directions; in any plane of the cubic lattice perpendicular to this direction all vertices 
will have the same orientation which will be one of the two directions in the plane; there 
will be no correlation between the preferred direction in different planes. 

However, as soon as we move to non-zero temperatures the picture might change. 
We, of course, still expect there to be a direction such that in each plane perpendicular 
to this direction most of the vertices will have the same direction, which will be one of 
the two directions in the plane. But now we might very well find a strict correlation 
between the preferred direction in different planes; the most obvious possibilities are 
that the structure is the same in all planes or that the structures in neighbouring planes 
are perpendicular, but more complicated patterns could also be perceived. The cause 
for the possible ordering is the occurrence of defects. It is possible that, for instance, 
identical structures dominating neighbouring planes will make the occurrence of 
defects more favourable than opposite structures will (either through the energy or the 
entropy associated with these defects). Since any preference will give a contribution to 
the free energy which increases proportionally to the area of the plane while the 
contribution from the random choice of the structure of next plane is an addition of ln(2) 
to the entropy independent of the size of the system, then the preference will always win 
in the infinite-volume limit. We shall abstain from suggesting any conjectures on what 
actually happens. 
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In model I we expect the same lack of translational order as HL suggested in the 
two-dimensional case. 
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